内容について
本書は量子力学の定式化から始め,自由粒子,調和振動子などの基本的な系の解説を経て,角運動量の話題に入る。また,その他にもたくさんの進んだ話題が
扱われている。特に角運動量の話題については,回転演算子,スピノール,球対称ポテンシャルのシュレディンガー方程式の解,クレブシュ-ゴルダン係数などの
一通りの話題の詳しい解説は比類ない完成度であると思う。
物理学を学ぶ時に疎かにしてはいけないのはその枠組みの論理構造だと思うが,本書はオリジナリティ溢れる記述で明快かつ論理的に量子力学を記述している。
量子力学の定式化の際,基本的要請として代表的な正準交換関係,行列力学,経路積分のどれも本書は採用していない。
本書が採用しているのは空間並進,回転,時間並進をそれぞれ運動量,角運動量,ハミルトニアンが司るという解析力学の結果のアナロジーである。
それゆえに古典力学との接続が容易であり,正準交換関係は量子力学の公理ではなく単に命題として導かれる。
ここまで書くと『新版 量子論の基礎』(清水明 サイエンス社) のような公理的な記述なのかと誤解を与えそうだが,
本書は必ずしもその辺を厳密にやっていない。しかし物理学はある程度自由に仮定を入れる余地があっていい非公理的なスタンスは,
必ずしも理解のしやすさを損なう訳ではない。むしろこちらの方が個人的には好みである。
本書の良い点
著者が述べているように本書は量子力学の初学者向けではない。そのため所々にある程度知識がある読者向けの記述
や,特殊関数などの物理数学を前提とした記述が見られる。
しかし初学者向けでないために無駄を省き,ニュートリノ振動や経路積分,球面テンソルなど広範囲のトピックをより洗練された方法で記述することに成功している。
量子力学を大学の講義や入門書で学んだ後に読むことで,霧が晴れたような感覚を味わうことができる教科書である。
私は初学の段階で四苦八苦しながら本書の精読を試みた。最初の方は理解できない箇所も多かったが,大学の講義で同じ箇所を学んだり,演習問題を解いたりするにつれ,
この教科書のありがたみに気づくようになった。
章末の演習問題は各章30問を超えるボリュームであり,優しいものから論文になっているような発展的なものまである。
しかしそのどれにも共通するのは,オリジナリティあふれる物理学の楽しさが盛り込まれていることである。例として私のお気に入りの問題を紹介する:
1.22
氷割りのきりが,きり先を下にしてつりあいが保てる時間を,ハイゼンベルクの(Eとtに関する)不確定原理だけが制限であるとき大雑把に見積もれ。
きり先は尖っていて,きり先ときり先をのせている表面は堅いとせよ。結果の大きさを大幅に変えないような近似を用いて良い。氷割りのきりの
寸法と重さは適当な値を仮定せよ。大体の数値を求め,秒単位で表せ。
例題の解答は別冊『演習 現代の量子力学 J.J.サクライの問題解説』(丸山耕司,飯高敏晃 吉岡書店)にある。
本書の良くない点
本書は計算過程をたびたび省略しているため,量子力学にある程度習熟していないと行間を埋めるのが辛いと思う。また,(上),(下),演習問題の解答を揃えると
なるとかなりの値段になってしまう。しかし値段以上の価値があると個人的には考える。
おわりに
以上のように,本書は量子力学の面白さを余すところなく伝える教科書である。ぜひ手にとっていただいて一読をお勧めする。